We are going to present two papers at ACL this year:
- Zarrieß S, Schlangen D. “Easy Things First: Installments Improve Referring Expression Generation for Objects in Photographs”. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). pdf
- Schlangen D, Zarrieß S, Kennington C. “Resolving References to Objects in Photographs using the Words-As-Classifiers Model”. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016) pdf
Both are in the area of grounded semantics, and both make use of our variant of the “word-as-classifiers” model, where the (perceptual parts of the) semantics of a word is modelled as a classifier on perceptual input. Those models are trained from referring expressions. The first paper uses this for generation and shows that we can work around the relative noisiness of the classifiers in generation by following a strategy of generating what Herb Clark calls installments, trial NPs. The other paper is on resolution and shows that we can reach relatively decent performance with this simple model, even compared to (more) end-to-end deep learning based ones.
Let us know what you think in the comments!